On the Complexity of Recognizing S-composite and S-prime Graphs

نویسنده

  • Marc Hellmuth
چکیده

S-prime graphs are graphs that cannot be represented as nontrivial subgraphs of nontrivial Cartesian products of graphs, i.e., whenever it is a subgraph of a nontrivial Cartesian product graph it is a subgraph of one the factors. A graph is S-composite if it is not S-prime. Although linear time recognition algorithms for determining whether a graph is prime or not with respect to the Cartesian product are known, it remained unknown if a similar result holds also for the recognition of S-prime and S-composite graphs. In this contribution the computational complexity of recognizing S-composite and S-prime graphs is considered. Klavžar et al. [Discr. Math. 244: 223-230 (2002)] proved that a graph is S-composite if and only if it admits a nontrivial path-k-coloring. The problem of determining whether there exists a path-kcoloring for a given graph is shown to be NP-complete even for k = 2. This in turn is utilized to show that determining whether a graph is S-composite is NP-complete and thus, determining whether a graph is S-prime is CoNP-complete. Many other problems are shown to be NP-hard, using the latter results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on 3-Prime cordial graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

4-Prime cordiality of some classes of graphs

Let G be a (p, q) graph. Let f : V (G) → {1, 2, . . . , k} be a map. For each edge uv, assign the label gcd (f(u), f(v)). f is called k-prime cordial labeling of G if |vf (i) − vf (j)| ≤ 1, i, j ∈ {1, 2, . . . , k} and |ef (0) − ef (1)| ≤ 1 where vf (x) denotes the number of vertices labeled with x, ef (1) and ef (0) respectively denote the number of edges labeled with 1 and not labeled with 1....

متن کامل

On (Semi-) Edge-primality of Graphs

Let $G= (V,E)$ be a $(p,q)$-graph. A bijection $f: Eto{1,2,3,ldots,q }$ is called an edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ where $f^+(u) = sum_{uwin E} f(uw)$. Moreover, a bijection $f: Eto{1,2,3,ldots,q }$ is called a semi-edge-prime labeling if for each edge $uv$ in $E$, we have $GCD(f^+(u),f^+(v))=1$ or $f^+(u)=f^+(v)$. A graph that admits an  ...

متن کامل

A Survey on Complexity of Integrity Parameter

Many graph theoretical parameters have been used to describe the vulnerability of communication networks, including toughness, binding number, rate of disruption, neighbor-connectivity, integrity, mean integrity, edgeconnectivity vector, l-connectivity and tenacity. In this paper we discuss Integrity and its properties in vulnerability calculation. The integrity of a graph G, I(G), is defined t...

متن کامل

Cubic symmetric graphs of orders $36p$ and $36p^{2}$

A graph is textit{symmetric}, if its automorphism group is transitive on the set of its arcs. In this paper, we  classifyall the connected cubic symmetric  graphs of order $36p$  and $36p^{2}$, for each prime $p$, of which the proof depends on the classification of finite simple groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Discrete Applied Mathematics

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2013